The Promise of Virtual Reality in Healthcare: Part Two

Posted by Todd Maddox & Tim Fitzpatrick on Oct 10, 2019 11:51:31 AM
VR Applications in Patient Education and Healthcare Professional Training

The goal of all hospital administrators and medical personnel is to provide the highest quality of care that results in the best possible health outcomes for their patients. Increasingly, this drive for value also means improving a now-measurable patient experience.  Ensuring healthcare providers are highly-trained and competent in all critical aspects of their given domains will surely increase qualitative measures of patient satisfaction, but this is only one part of the equation. Crucially, experience itself centers around a patient’s understanding and familiarization with the upcoming medical treatments and procedures.

Satisfied patients understand their medical needs and upcoming medical procedures because their healthcare provider offers high-quality education and training tools. Healthcare providers with satisfied patients are the providers who know how to impart knowledge effectively on patients, and critically have the people skills needed to put patients at ease throughout their care journey. Without high-quality education and training, patients feel ill-informed and lack confidence, all of which breeds stress, anxiety, and mental and physical discomfort before, during, and after the point of care.

Unfortunately, the overwhelming majority of both patient education and provider training is done through reading text, viewing PowerPoint presentations, or watching videos. As our neuroscience review suggests, these load only on the cognitive skills learning system in the brain when a better approach would be to broadly engage experiential, cognitive, emotional and behavioral learning systems in the brain in synchrony. While some hands-on simulation training is provided — such as when a patient needs to care for a new medical device like a colostomy bag, or a surgeon learns to conduct a specific surgical procedure — this training is often time intensive, costly, inconsistent, location-dependent and unable to scale. More of it would be valuable, both in terms of availability and bandwidth, but rarely fits in the budget or infrastructure.

Patient and healthcare provider education and training is ripe for the application of modern technologies such as VR that broadly engages multiple learning systems in the brain in synchrony. Patients will get the high-quality experiences that they so desperately need to feel informed, confident and to reduce stress and anxiety. Healthcare providers will also get the high-quality experience that they need to feel better informed, and to obtain enhanced people and communication skills.

For Patient Education:

Suppose you are diagnosed with cancer of the large intestine and you need surgery to remove part of it. Ultimately, you will be fitted with a colostomy bag. You can read documents and watch videos outlining the surgical procedure, the pre-operative preparation and post-operative recovery, and the steps to follow to care for the colostomy bag. This entire sequence is processed purely by the cognitive system in the brain. Instead, imagine an interactive storytelling approach using virtual reality. Suppose that a 360 VR experience was created in which you meet a colon cancer survivor who has been using a colostomy bag for years. The patient, along with a nurse, walks you through the hospital, showing you the patient waiting rooms, touring the operating rooms, and even a typical recovery room. Then, the patient talks you through the procedure from firsthand experience, the whole time emphasizing that she has walked in your shoes while dispelling myths and pointing out a few tricky parts of caring for a colostomy bag. Following your surgery, you might get a new VR experience that shows you how to care and maintain the colostomy bag at home with the same patient as your guide. Through a combination of first- and third-person perspectives, you begin to feel more confident and less anxious now that you are familiarized with aspects of what to expect during the course of your treatment and care. 

kimon meeting patient

As a second example, suppose you are a patient with chronic kidney disease (CKD) and end-stage renal disease (ESRD) who has been on dialysis for several months. You have met a few patients at the dialysis center who have switched to a home dialysis modality, so you want to learn more about it the next time you talk to your nephrologist. Though you have read some of the materials and watched a few videos, you still don’t feel like you have enough information to make a confident decision — it’s a big change. Now let’s consider an interactive storytelling approach with virtual reality. Suppose that a 360 VR experience was created in which you experience in-clinic and in-home dialysis from a first-person perspective (i.e., that of the patient) and a third-person perspective (i.e., that of a loved one or friend). While immersed in this experience, a narrative unfolds for you that describes the relevant steps involved in this new modality while the patient is experiencing them, and also includes a narrative regarding the decision making process and factors to consider when discussing this choice with your care team. At the end of the day, this is an important decision, and one that patients ought to be able to make confidently, which only comes through a deeper understanding of what to expect.

In both the colon and kidney care examples, the interactive, immersive VR experience broadly engages multiple systems in the brain. You feel like you are there and you feel like you are gaining the requisite experience to get through whatever’s next, to make the right decision for yourself, and to live a good life. You are satisfied; you are confident; and you are less stressed.

For Healthcare Providers:

The VR applications for healthcare providers are many. Suppose you are a medical student faced with the problem of learning the anatomy and physiology of the human body. The human body is a 3-dimensional structure that functions as a dynamic system. Unfortunately, most traditional medical visualization tools are textbooks or slide shows that are filled with 2D static images. Thus, the learner must convert a series of 2D static images into a 3D dynamic mental representation in the brain that accurately reflects the human form. This relies exclusively on the cognitive processing system in the brain, is very challenging and is fraught with the potential for error. Now consider a VR solution where a 3-dimensional, dynamic representation of the human body appears in front of you. You can walk around the body and can rotate it so that you can see it from all angles. You can select a skeletal view and when you touch a bone its name appears. In this case, you have a highly accurate 3-dimensional dynamic VR visualization tool that is intuitive and facilitates the development of a highly accurate 3-dimensional dynamic representation in the learner’s brain. Those resources can be used to learn the names of the bones, muscles, arteries, etc., but with a rich visual mental representation upon which to attach them.

The same logic holds for procedures such as caring and maintaining a central line. The most common approach to central line care and maintenance training is to have learners read documents describing in detail all of the required steps. Again, this focuses exclusively on the cognitive processing system and is error prone. Now imagine going in VR and being transported into an immersive setting in which you are watching someone care and maintain a central line in a virtual world in real-time from either a first-person or third-person view.


The cognitive load is instantaneously reduced and visual representation areas in the brain are engaged. Learning will be enhanced, quicker and more robust.


People skills and empathy are what set a healthcare organization apart from the rest. These skills are hard to train with traditional approaches, but VR offers an excellent medium. The ability to “walk a mile in a patient’s shoes” can not be overstated. Imagine a nurse-in-training donning a VR headset and “walking a mile in the shoes of a patient”. They can obtain a first-person virtual experience of the stress and anxiety that a patient feels when someone is explaining a procedure to them and they don’t understand all of the jargon and terminology. They can experience what it is like to be a patient interacting and communicating with an empathetic nurse and with a nurse who shows little empathy.

Analogously, a nurse-in-training might be transported into the middle of a busy emergency room and shadow a seasoned nurse explaining a patient’s condition to their distraught spouse. Using voice-over, the seasoned nurse might explain how they are showing empathy to sooth the concerns of the spouse. The nurse-in-training is in the situation and can feel the emotions. They can combine the information provided by the seasoned nurse with the behaviors they are observing, all within an emotion-laden, realistic experience. This engages multiple learning systems in synchrony and will build empathy quickly and effectively.

Situational awareness is also effectively trained in VR. Because VR training platforms allow the learner to obtain extensive practice, a broad range of situations can be trained. Situations that the medical personnel will experience on a day-to-day basis can be trained, but other, extreme conditions can also be trained. These come in many forms. For example, common situations can be trained, but under time sensitive conditions, or with sub-optimal equipment or in sub-optimal environments. Imagine the EMT who must deliver a baby in the back of the ambulance, without some critical piece of equipment and with a mother whose blood pressure is dangerously low.

Patient and healthcare provider education and training is ripe for the introduction of interactive, immersive virtual reality education and training technologies to complement existing training tools and to build satisfaction, confidence, empathy and situational awareness. These tools educate and train through experience. 

Put plainly: VR builds critical knowledge and expertise — one experience at a time.


Find the full 5-part series here:

Part One: The Neuroscience and Four Use Cases.

Part Two: Patient Education & Health Professional Training.

Part Three: Preparing the Senior Care Workforce.

Part Four: Mental Health, Therapy & Addiction. 

Part Five: Pain Management.


Topics: Training, Satisfaction, Staff Training, Stress, Patient Education, Kidney Care

Ready for what's next?

Now you will be.

At the end of the day, your healthcare journey begins and ends with you. Using virtual reality to improve education and training in healthcare has limitless potential to impact the lives of everyone you meet along the way.

Remember, evidence shows VR:

  • Improves satisfaction
  • Decreases anxiety
  • Improves learning
  • Improves retention
  • Increases actionable empathy
  • Outperforms classroom-based learning
  • Is the medium preferred by learners

The benefits of VR have never been more accessible.

Subscribe Here!

Recent Posts